

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-7, July 2019

 1 www.ijeas.org

Abstract— In this paper, a three-step design is proposed to

solve the point-to-point problem in a given maze. First, a

well-known “depth-first” algorithm is adopted to find all the

possible connection among grids in the maze with a graph

structure. The obtained graph will then be simplified by deleting

both of non-intersection and non-end grids. Such a step will

largely decrease the computation load for constructing the path

between the starting grid and the desired destination in the

given maze. Finally, based on simplified graph the Dijkstra’s

algorithm is employed to find the shortest path between the

starting grid and the destination. Numerical results of three

typical examples are obtained to demonstrate the success of the

proposed design.

Index Terms— Maze solving, route searching, shortest path.

I. INTRODUCTION

In the recent years, the study of automatic robots has attracted

lots of attention. Those designs usually are equipped with

many expensive sensors to fetch the necessary information

from unfamiliar space (e.g., [1]-[3]). Among the existing

researches, self-driving vehicle is one of giant mobile robots

and its development might lead the trend of future technology

[4]. In addition, many companies have developed their own

robot for several years, which may bring considerable benefits

on business trade. One of the main tasks of automatic robots is

to build the overall road map of the interesting environment. It

means that the surrounding environment to the robot is like a

maze.

The topic of maze-like problem has been studied for more

than forty years (e.g., [5]-[7]). In fact, in the recent years there

are many micro-mouse robot competitions held around the

world every year. Some of examples can also be found in the

video link given in [8]-[10]. Competitors are requested to

work for the improvement of the efficiency for path planning

(e.g., [11]-[15]). Among the existing literatures, there are

several famous algorithms (e.g., [16]-[19]) have been

proposed without prior information of the maze such as

Trémaux's algorithm, random mouse, wall follower, Pledge,

breadth-first, and depth-first method. Among those

algorithms, wall follower methods and random mouse scheme

are the easiest ones for implementation. However, their

efficiencies are not so good. In addition, both Trémaux's and

Pledge algorithm cannot meet the requirements of travelling

all feasible paths in the maze. Thus, in the previous study we

have modified the depth-first algorithm and applied it to the

path searching task in an unknown place [24].

Another task of automatic robots might be the design of

 D.-C. Liaw, Institute of Electrical and Control Engineering, National

Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

C.-C. Kuo, Institute of Electrical and Control Engineering, National

Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.,

H.-T. Lee, Institute of Electrical and Control Engineering, National

Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C

traveling around the maze. One of the examples is that robot

could get the shortest route from any starting point to a

desired end point. There are several existing algorithms

coming from graph theory have been used to find the shortest

paths such as Dijkstra’s algorithm, A* algorithm,

Bellman-Ford algorithm and Floyd-Warshall algorithm

[25]-[28]. Among those existing studies, best routes selection

between Dijkstra and Floyd-Warshall algorithm were

compared in [28] and a performance comparison study have

been analyzed in [26]. In addition, a computational load

analysis of Dijkstra, A*, and Floyd-Warshall algorithms has

been studied in [29].

It is observed from those micro-mouse robot competitions

(e.g., [8]-[10]) that those designers for the micro-mouse have

tried very hard to find the path from the starting point to the

set ending point and increase the speed of the robot to

minimize the elapsed time. In general, they do not concern

whether the chosen path is the shortest one since the whole

graph of the maze has not been built. Here, we extend our

previous study [24] to propose a different approach by finding

the connecting graph among all the points of the given maze.

The shortest path will then be created from the graph.

The paper is organized as follows. First, both depth-first

searching algorithm and Dijkstra’s searching method will be

recalled in Section II. It is followed by the discussions of the

main design. Numerical simulations of three typical

micro-mouse robot competitions will be given in Section IV

to demonstrate the success of the proposed scheme. Finally,

conclusions are given in Section V to highlight the

contributions.

II. PRELIMINARIES

In this section, we will briefly recall depth-first algorithm (e.g.,

[20]-[21]) and Dijkstra’s algorithm [30]. Those two

algorithms will then be employed in Section III to construct a

cascade-type searching scheme for the maze which is

considered in micro-mouse contest. Details are given as

follows.

A. Definition of Maze

Before possible path finding, the rule and coordinate of the

maze solving problem should be first defined clearly.

According to the IEEE standard “Micro-Mouse Competition

Rules,” the maze is composed of 18cm x 18cm unit squares

arranged as 16 x 16 units as shown in Fig. 1 [9]. The wall of

each unit of the maze is 5cm high and 1.2 cm thick. In addition,

the starting point of the maze is located at one of the four

corners and is bounded by the walls on three sides. Besides,

the start line of the game is located between the first and

second squares. It means that the timer of the game starts to

work at the time for the mouse exiting the corner square. The

destination of the game is defined as the place which it has

A Study of Point-to-Point Routing Problem in Mazes

Der-Cherng Liaw, Chien-Chih Kuo, Hung-Tse Lee

A Study of Point-to-Point Routing Problem in Mazes

 2 www.ijeas.org

four units of square and is at the center of the maze. According

to the standard, the destination is assumed to have only one

entry. The objective of the competition is to find the path from

the starting point to the destination point with minimum time

of completing the whole procedure.

Destination

Start

Fig. 1. Standard maze in micromouse contest [9]

To facilitate the analysis, we define the global maze

coordinate as shown in Fig. 2. Here, X-axis is defined as

positive in the right and Y-axis is defined as positive upward,

respectively. If the robot starts at the node (x0,y0), then the

next position can be calculated by the rotation angle of the

wheel. In addition, there will be many sensors, like ultrasonic

emitter, radar array or camera, to sense the environmental

obstacle which is wall in the maze.

x

y

(x+1,y)

(x,y-1)

(x-1,y)

(x,y+1)

(0,0)

(x,y)

Fig. 2. Definition of coordinate in a maze

In general, the topology of the maze is usually converted into

a graph. For instance, an example of maze is shown in Fig. 3,

which has size of 8x8. The original topology of maze is

depicted in Fig. 3(a), while the corresponding graph is defined

in Fig. 3(b). Here, each vertex and edge of Fig 3(b),

respectively, represents the corresponding square and the

traversable path between two neighboring squares in Fig.

3(a).

x

y

(0,0) (1,0)

(0,1)

(a)

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

(b)

Fig. 3. A 8x8 maze: (a) The original maze, (b) The corresponding graph

representation

B. Depth-First Searching Algorithm

Next, we briefly recall an algorithm from [20] for finding all

possible connections in a given maze. In the sequel, we use

“grid” to stand for the “square” for the basic element of maze

defined in IEEE standard.

The main purpose of the depth-first algorithm is to help robot

to generate the unknown maze automatically. Details of the

corresponding steps are listed as follows:

Step 1. Place the robot on the starting point v of the maze and

record the environment information collected by sensors.

Step 2. Calculate the current position of the robot in terms of

the maze coordinate system defined in Section II.A and push

the starting point v in the stack N.

Step 3. If the stack N is empty, the searching process is

finished. Otherwise, pop a grid w from stack N.

Step 4. If w is a visited grid, go to previous Step 3. Otherwise,

robot will visit grid w and record current position and update

the map of maze.

Step 5. Use sensors to find traversable unvisited neighbors of

w and push those unvisited neighboring grids to the stack N in

sequence.

Step 6. If the current grid w is an end grid and the stack N is

not empty, the robot will back to the previous intersection grid

and pop a grid w from stack N and go to Step 4. Otherwise, go

to Step 3.

C. Dijkstra’s Algorithm

Now, we recall Dijkstra’s algorithm which is used to solve the

single-source node based shortest path problem with weighted

directed graph. After many years of evolution, the algorithm

is not the same as its original version. The current version is to

choose one vertex as source node and find the shortest path

from the source node to any others in the graph. Details of the

corresponding steps are recalled from [30] as listed below:

Step 1. Mark the nodes which have not been visited and

Create an unvisited set Q by all unvisited nodes.

Step 2. Assign an initial distance value to each node. The

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-7, July 2019

 3 www.ijeas.org

initial distance value for the initial node is set to 0 while all

other nodes have the value of infinity. Set the initial node as

current node.

Step 3. Find all unvisited neighbors of current node and

calculate their estimated distances between the current node

and the neighbor. Then compare the newly calculated

distance with the previous assigned value and update the

distance value as the smaller one.

Step 4. After all of the unvisited neighbors of the current

node are calculated, the current node is marked as visited

node and is deleted from the unvisited set Q.

Step 5. If the destination has been visited or the smallest

distance value among the nodes in the unvisited set is infinity,

then stop and the algorithm is finished.

Step 6. Otherwise, select the unvisited node that is marked

with the smallest estimated distance and set it as the new

“current node.” Then go to Step 3.

III. A THREE STEP DESIGN

In the design of the robot for micro-mouse contest, people

might consider to find the whole structure of the maze and

convert into a graph as depicted in Fig. 3. Then construct a

searching scheme for obtaining the shortest path from the

starting point to the desired destination. It is known that the

time complexity of calculation for shortest path will increase

as the size of maze becomes larger. To relax such a burden, in

this study, we propose to insert a graph simplification scheme

to reduce the size of the grid before executing shortest path

searching. It is achieved by deleting the unnecessary vertex

such as non-intersection and non-end vertex. An example is

given in Fig. 4. The original graph is given on the right-top of

Fig. 4. First step is to delete those non-intersection and

non-end vertex as depicted on left-top of Fig. 4. The second

step is to reform the edge with the length as given in

right-bottom of Fig. 4. In the final step of graph simplification,

we can re-name all remaining vertices as shown on the

left-bottom of Fig. 4.

Based on the discussions above and the recall in Section II,

we can now propose a three step design for solving the

point-to-point problem in a maze. It is consisted of depth-first

algorithm, graph simplification and Dijkstra’s algorithm. The

flow chart of the proposed scheme is described in Fig 5.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 9 13

6 10

7 11 15

4 8

A F I

C G

D H J

B E

Step 1

Step 2

Step 3

1

1

1

1
1

1
1

11

1

1

1

1

1

1

1
2

1

1

1 1

2

3

3

1
2

1

1

1 1

2

3

3

Fig. 4. Step of graph simplification

Place the robot on

the starting point v

StartSearching all path

Environment

sensing & record

Calculate current

global position

Push the starting

point v in stack N

Pop a grid w from

stack N

w is visited?

Go back to previous

intersection grid

Stack N is empty?

Shortest route calculation

Yes

No

Graph simplification

No

Yes

Create an unvisited set

Q by all unvisited grids

Distance value

initialization

Consider all of unvisited

neighbors and calculate

their estimated distances

Compare new estimated

distance to the current

assigned value

Mark the current node as

visited and remove it from

the unvisited set

Destination is

visited?

Select smallest

unvisited node to

set it as new

current node

End

Delete non-end and

non-intersection grids

Reform the edge

with new length

Re-name all

remaining vertices

Yes

visit w and update

the current map
w is end grid &

N is not empty?

Push unvisited

neighbor of w to

stack N in sequence

Yes

No

No

Fig. 5. Flow chart of the proposed method

IV. NUMERICAL SIMULATIONS

In the following, two types of numerical simulations will be

given to verify the performance of the proposed design

presented in Section III. The first one is to verify the functions

of the proposed three-step design and the second one is to

present the results for three typical examples used in

micro-mouse contest. Details are given as follows. For

A Study of Point-to-Point Routing Problem in Mazes

 4 www.ijeas.org

simplicity and without loss of generality, in the following

study we only consider the maze with size of 8x8.

A. Verification of Proposed Scheme

First, we consider the verification for the functions of the

proposed scheme. An example is given in Fig. 6. As shown in

Fig. 6, all the connection among vertices can be found after

eight iterations of executing depth-first algorithm. The

corresponding graph can then be constructed as depicted on

the left part of Fig. 7.

Start

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Fig. 6. Procedure of path searching

Next, a simplified graph can be obtained by deleting

non-intersection and non-end vertex and re-naming the

remaining vertices. The result is shown on the right part of Fig.

7.

Finally, based on simplified graph we can now construct the

shortest path for point-to-point routing problem by using

Dijkstra’s algorithm. The results are shown in TABLE I.

C M P

H Q

K R

I L N

S

B D G

E O

A F J T

3

3 31

1 1

4

3

2

2

1

1
2

2

5

2

2

6

1

19

1

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

Fig. 7. Graph simplification

TABLE I. THE SHORTEST DISTANCE WEIGHT VALUE

 A C E H J M N P T

A 0 29 7 10 14 15 16 14 13

C 29 0 30 23 35 24 25 23 34

E 7 30 0 11 13 16 17 15 12

H 10 23 11 0 16 9 10 8 15

J 14 35 13 16 0 21 22 20 5

M 15 24 16 9 21 0 7 3 20

N 16 25 17 10 22 7 0 6 21

P 14 23 15 8 20 3 6 0 19

T 13 34 12 15 5 20 21 19 0

B. Case Study of Typical Examples

Now, we consider the application of the proposed scheme to

three typical examples used in micro-mouse contest. In order

to test the performance of the proposed scheme, in the

following we will use Visual C++ to construct mazes with

inner loops for testing the feasibility of the proposed scheme.

Details are given below.

Case 1. Starting point to open end point [31]

 The first example is to consider the problem of the starting

point to one open end point as shown in Fig. 8. Here, the

starting point is assumed to be at (0,8) and the destination is at

(2,0) of the X-Y coordinate. Follow the procedure presented in

Section III, we can obtain the simplified graph with twenty

vertices as shown in Fig. 8(b). The twenty vertices are also

named as A to T with the distance between two vertices shown

on the corresponding edge. Hence, the shortest path problem

becomes the problem for finding the shortest problem

between vertices A and C. By applying the Dijkstra’s

algorithm, we then have the shortest path depicted as green

line in Fig. 8(a). According to the performance evaluation

given in TABLE II, there are four direct routes from vertex A

to vertex C. The suggested path shown in Fig. 8(a) is truly the

one with shortest distance.

Case 2. Starting point to the middle of maze

The second example is to consider the problem of the

starting point to the middle of maze as shown in Fig. 9. Here,

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-7, July 2019

 5 www.ijeas.org

the starting point will be the same as the one for Case 1 while

the destination is assumed to be at (4,3) of the X-Y coordinate.

Similarly, we can obtain the simplified graph with

twenty-nine vertices as shown in Fig. 9(b). The twenty-nine

vertices are also named as A to γ with the distance between

two vertices shown on the corresponding edge. Hence, the

shortest path problem becomes the problem for finding the

shortest problem between vertices A and O. The shortest path

can then be obtained by using the Dijkstra’s algorithm as

depicted in green line of Fig. 10(a). As given in TABLE II,

there are two direct routes from vertex A to vertex O. The

suggested path shown in Fig. 9(a) is truly the one with shortest

distance.

Case 3. Starting point to the closed end point

The third example is to consider the problem of the

starting point to one closed end point as shown in Fig. 10 with

the starting point being at (0,0) and the destination being at

(7,0) of the X-Y coordinate. A simplified graph can then be

obtained with twenty-five vertices as shown in Fig. 10(b) with

the name of A to Y and the distance between two vertices

shown on the corresponding edge. The shortest path problem

becomes the problem for finding the shortest problem

between vertices A and W. By using the Dijkstra’s algorithm,

the shortest path can then be obtained as depicted in green line

of Fig. 10(a). According to TABLE II, there are two direct

routes from vertex A to vertex W. The suggested path shown

in Fig. 9(a) is found to be the one with shortest distance.

End

Start
(a)

C M P

H Q

K R

I L N

S

B D G

E O

A F J T

3 31

1 1

4

3

2

2

1

1
2

2

5

2

2

6

1

19

1

(b)

Fig. 8. Case 1. Starting point to open end point [31]

Start

Destination

(a)

I S W

J M T

E N U X

O R Y

F P Z

B K Q α

C G L V β

A D H γ

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

4

3

3
2

4

2

5

4

12 22

2 1

1
1

(b)

Fig. 9. Case 2. Starting point to the middle of maze (e.g., [8]-[10])

Start

Touch and Back

(a)

A C H O W

L

P

E M Q U

R

D F J X

G

B K N S Y

V

I

4

3

1 1

1 1
1

1

1

4
2

2

5

23
6

2

4

11

2

2

1

2

(b)

Fig. 10. Case 3. Starting point to the closed end point [32]

TABLE II. PERFORMANCE EVALUATION

 Route searching Length

Case

1

A→B→D→I→L→K→C 29

A→B→F→G→D→I→L→K→C 35

A→B→D→I→L→S→R→K→C 37

A→B→F→G→D→I→L→S→R→K→C 43

Case

2

A→I→T→U→X→Y→Z→α→β→V→Q→P→O 27

A→I→T→U→N→E→B→K→Q→P→O 29

Case

3

B→D→F→J→S→V→R→Q→P→O→W 24

B→D→F→J→S→V→X→P→O→W 26

V. CONCLUSIONS

In this paper, we have proposed a three-step design for finding

the shortest path from one point to the desired destination.

Numerical results have also been obtained to demonstrate the

success of the proposed scheme. In this study, we only

concern the length of the edge between one vertex and the

other. Possible direction change of robot running is neglected.

To facilitate the design, a stack can be added in the program to

record all possible direction changes for the practical

implementation.

REFERENCES

[1] Leonard, John J., and Hugh F. Durrant-Whyte, “Directed sonar sensing

for mobile robot navigation,” Springer Science & Business Media,

2012, vol. 175.

[2] Tsai, C. C., Huang, H. C., & Chan, C. K., “Parallel elite genetic

algorithm and its application to global path planning for autonomous

robot navigation,” IEEE Transactions on Industrial Electronics, 2011,

vol. 58, no.10, pp. 4813-4821.

[3] R. del-Hoyo-Alonso, N. Medrano-Marques and B. Martin-del-Brio, “A

simple approach to robot navigation based on cooperative neural

networks,” IEEE 2002 28th Annual Conference of the Industrial

Electronics Society (IECON), 2002, pp. 2421-2426.

[4] Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J., “Path planning

for autonomous vehicles in unknown semi-structured environments,”

The International Journal of Robotics Research, 2010, vol. 29, no. 5,

pp. 485-501.

[5] L. Wyard-Scott and Q. -. M. Meng, “A potential maze solving

algorithm for a micromouse robot,” IEEE Pacific Rim Conference on

Communications, Computers, and Signal Processing. Proceedings,

1995, pp. 614-618.

[6] S. Mishra and P. Bande, “Maze solving algorithms for micro mouse,”

2008 IEEE International Conference on Signal Image Technology

and Internet Based Systems, 2008, pp. 86-93.

[7] B. Gupta and S. Sehgal, “Survey on techniques used in autonomous

maze solving robot,” 2014 5th International Conference - Confluence

A Study of Point-to-Point Routing Problem in Mazes

 6 www.ijeas.org

The Next Generation Information Technology Summit (Confluence),

2004, pp. 323-328.

[8] https://www.youtube.com/watch?v=NqdZ9wbXt8k

[9] https://www.youtube.com/watch?v=cYCMcdjEetY

[10] https://www.youtube.com/watch?v=rZsHmy251UI

[11] Cai, J., Wan, X., Huo, M., & Wu, J., “An algorithm of micromouse

maze solving,” In 2010 10th IEEE International Conference on

Computer and Information Technology, 2010, pp. 1995-2000.

[12] Willardson, D. M., “Analysis of micromouse maze solving algorithm,”

Learning from Data, 2001.

[13] Sharma, M., & Robeonics, K., “Algorithms for Micro-mouse,” In 2009

International Conference on Future Computer and Communication,

2009, pp. 581-585.

[14] Chen, N., “A vision-guided autonomous vehicle: an alternative

micromouse competition,” IEEE Transactions on Education, 2009,

pp. 253-258.

[15] Saman, A. B. S., & Abdramane, I., “Solving a reconfigurable maze

using hybrid wall follower algorithm,” 2013.

[16] K. Lutvica, J. Velagić, N. Kadić, N. Osmić, G. Džampo, and H.

Muminović, “Remote path planning and motion control of mobile

robot within indoor maze environment,” 2014 IEEE International

Symposium on Intelligent Control (ISIC), 2014, pp. 1596-1601.

[17] R. Kumar, P. Jitoko, S. Kumar, K. Pillay, P. Prakash, A. Sagar, R.

Singh, U. Mehta, “Maze solving robot with automated obstacle

avoidance,” Procedia Computer Science, 2017, vol. 105, pp. 57-61.

[18] M. O. A. Aqel, A. Issa, M. Khdair, M. ElHabbash, M. AbuBaker, and

M. Massoud, “Intelligent maze solving robot based on image

processing and graph theory algorithms,” 2017 International

Conference on Promising Electronic Technologies (ICPET), 2017, pp.

48-53.

[19] Y. Yu, G. Pan, Y. Gong, K. Xu, N. Zheng, W. Hua, X. Zheng, and Z.

Wu, “Intelligence-augmented rat cyborgs in maze solving,” PLoS

ONE, 2016.
[20] TARJAN, Robert, “Depth-first search and linear graph algorithms,”

SIAM journal on computing, 1972, vol. 1, no. 2, pp. 146-160.

[21] KORF, Richard E, “Depth-first iterative-deepening: An optimal

admissible tree search,” Artificial intelligence, 1985, vol. 27, no. 1, pp.

97-109.

[22] X. Liu, “A comparative study of A-star algorithms for search and

rescue in perfect maze,” 2011 International Conference on Electric

Information and Control Engineering, 2011.

[23] S. Mahmud, U. Sarker, M. Islam, and H. Sarwar, “A greedy approach

in path selection for DFS based maze-map discovery algorithm for an

autonomous robot,” 2012 15th International Conference on Computer

and Information Technology (ICCIT), 2012, pp. 546-550.

[24] C.-M. Wu, D.-C. Liaw and H.-T. Lee, “A Method for Finding the

Routes of Mazes,” 2018 International Automatic Control Conference

(CACS), Taoyuan, 2018, pp. 1-4.

[25] Dijktra, E. W., “A Note on Two Problems in Connexion with Graphs,”

Numerische Mathematik, 1959, vol. 1, pp. 269-271.

[26] B. Popa and D. Popescu, “Analysis of algorithms for shortest path

problem in parallel,” 2016 17th International Carpathian Control

Conference (ICCC), Tatranska Lomnica, 2016, pp. 613-617.

[27] J. C. Dela Cruz, G. V. Magwili, J. P. E. Mundo, G. P. B. Gregorio, M.

L. L. Lamoca and J. A. Villaseñor, “Items-mapping and route

optimization in a grocery store using Dijkstra's, Bellman-Ford and

Floyd-Warshall Algorithms,” 2016 IEEE Region 10 Conference

(TENCON), Singapore, 2016, pp. 243-246.

[28] Risald, A. E. Mirino and Suyoto, “Best routes selection using Dijkstra

and Floyd-Warshall algorithm,” 2017 11th International Conference

on Information & Communication Technology and System (ICTS),

Surabaya, 2017, pp. 155-158.

[29] M. A. Djojo and K. Karyono, “Computational load analysis of

Dijkstra, A*, and Floyd-Warshall algorithms in mesh network,” 2013

International Conference on Robotics, Biomimetics, Intelligent

Computational Systems, Jogjakarta, 2013, pp. 104-108.

[30] https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

[31] https://www.youtube.com/watch?v=xskRE5MVRn4

[32] https://www.youtube.com/watch?v=IngelKjmecg

Der-Cherng Liaw, Institute of Electrical and Control Engineering,

National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan,

R.O.C.

C.-C. Kuo, Institute of Electrical and Control Engineering, National

Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

H.-T. Lee, Institute of Electrical and Control Engineering, National

Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

https://www.youtube.com/watch?v=NqdZ9wbXt8k
https://www.youtube.com/watch?v=cYCMcdjEetY
https://www.youtube.com/watch?v=rZsHmy251UI
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://www.youtube.com/watch?v=xskRE5MVRn4
https://www.youtube.com/watch?v=IngelKjmecg

